The CITIUS detector

<u>Charge Integration</u> Type Imaging Unit with <u>high-Speed</u> <u>extended-Dynamic-Range</u>

1 Gcps/pixel with 72.6µm pixels (18 Tcps/cm²)

Conceptual Design: 2013-2014 Development

> Sensor: 2015-2020 Data-Processing FPGA card: 2015-2023

System: 2020-

This talk: Performance and associated applications.

CITIUS: Demonstrated Sensor Performance

Pixel Size	72.6 μm square
Frame rate	17.4 kHz
Saturation Count	945 Mcps/pixel @ 10 keV
rate	18 Tcps/cm ²
Sensor	Silicon (650µm thick)
Vacuum	compliant
Intra-module gap	None
Tiling	4 side
Noise	<40 e-rms 0.018 phs rms @8 keV

Sensor

On-chip ADCs (one ADC/8 pixels) Digital Output

- 140 Gbps/sensor (physical)
- 156 Gbps/sensor (information)
- bit depth 32 bit (information)
- 1.7 PB/day

2

SPring.

CLA

XPCS @ 17.4 kfps BL29XU EH3 in July 2021

Y. Honjo, K. Ozaki, H. Nishino **T. Hoshino (Tohoku Univ.)**

40 Mcps/pixel at 8 keV.

Frame Rate: 117.5 kHz with 35 kpixels @1/8 ROI Double Burst Mode: 10 MHz

CITIUS

Pixel Number: 280 kpixels Frame rate: 17.4 kframes/s Frame Cycle: 57.5 μs Duty ratio: 94 %

Sample: Silica (100 nm ϕ , 28.8 wt%) in MEK + PEI + MeOH (66.8, 3.9, 0.5 wt%) in 0.5mm capillary Slit: Size: 20 μ m \Box , Position: 1 m upstream of the sample Incident X-ray beam: Photon energy: 8 keV, Photon flux: 2E9 photons/s Geometry: Camera length: 3.2 m Image Processing: Dark image subtracted T. Hatsui, RIKEN 3

M. Grimes et.al., J. Appl. Cryst. 56(4), 2023, pp. 1032-1037.

Bragg CDI at ESRF-EBS

	Count rate	Resolution	Acquisition Time
CITIUS	30 Mcps/pixel	20 ± 6 nm	23 s
MARPIX	1 Mcps/pixel	22 ± 9 nm	200 s

A detailed analysis showed CITIUS with 1 ms exposure gives similar data quality to MARPIX with 1 s exposure.

CITIUS: Demonstrated Sensor Performance

Pixel Size	72.6 μm square
Frame rate	17.4 kHz
Saturation Count rate	945 Mcps/pixel @ 10 keV 18 Tcps/cm ²
Sensor	Silicon (650 µm thick)
Vacuum	compliant
Intra-module gap	None
Tiling	4 side
Noise	<40 e-rms 0.018 phs rms @8 keV

Sensor

On-chip ADCs (one ADC/8 pixels) Digital Output

- 140 Gbps/sensor (physical)
- 156 Gbps/sensor (information)
- bit depth 32 bit (information)
- 1.7 PB/day

5

SPring.

Count Rate (2/2)

- 945 Mcps/pixel @ 10 keV
- 1.23 Gcps/pixel @ 5 keV

7

SPring.8

Experimental Data

Flange-mounted in-vacuum CITIUS feasibility study for ptychography

in collab. with Y. Takahashi Group^{SPring-8} of Tohoku Univ.

840k

8

SPring. 8 Ta Test Chart (NTT-AT) 200 nm thick (phase shift 0.41 rad@6.5keV)

Virtual Source Size: $30 \ \mu m \times 150 \ \mu m$ Source Intensity: 2.6 x 10^10 photons/s Exposure Time: 1 second Max. Intensity at detector: 250 Mcps/pixel

Low-Q Region

without attenuators

August 30th, 2024 SRI2024

50 µm⁻¹ 2 µm⁻¹ Low-Q region imaged without attenuators Higher Resolution & Phase sensitivity

9

CITIUS: Demonstrated Sensor Performance

Pixel Size	72.6 µm square
Frame rate	17.4 kHz
Saturation Count rate	945 Mcps/pixel @ 10 keV 18 Tcps/cm ²
Sensor	Silicon (650 µm thick)
Vacuum	compliant
Intra-module gap	None
Tiling	4 side
Noise	<40 e-rms

Sensor

On-chip ADCs (one ADC/8 pixels) Digital Output

- 140 Gbps/sensor (physical)
- 156 Gbps/sensor (information)
- bit depth 32 bit (information)
- 1.7 PB/day

SPring.

Courtesy of Jaemyung Kim & Y. Hayashi (RIKEN) 3D XRD to visualize the metal grains CITIUS at 37 keV

SPring 8

Quasi-elastic scattering @ 14.4 keV

Demands

- high sensitivity @ 14.4 keV
 - 650 µm thick silicon
 - no corner QE loss
- high speed

CITIUS specifications

- 840k, 17.4 kframes/s
- 468 Gbps (58.5 GB/s, 5.1 PB/day)

On-the-fly edge compression Data Quality Confirmation

- SPring-8 Data Center (360 TFLOPS) Results
- 35 PB/beamtime
- compression ratio > 1000

Makina Saito et.al., Phys. Rev. Lett. 132, 256901 (2024)

Talk at Micro Symposium 12/3, Friday afternoon

FPGA-accelerated edge computing

FPGA

- Summation of 2 frames to one
- calibration
- entropy reduction
- SZIP compression

H. Nishino, et.al., Nucl. Instrum. Methods Phys. Res. A. 1057, 168710 (2023).

CITIUS: Demonstrated Sensor Performance

Sensor

On-chip ADCs (one ADC/8 pixels) Digital Output

- 140 Gbps/sensor (physical)
- 156 Gbps/sensor (information)
- bit depth 32 bit (information)
- 1.7 PB/day

SPring 8

CITIUS 20.2M for SACLA

SALCA: XFEL facility with 60 Hz

Major Specifications

Max. Frame rate: 5 kHz DAQ for SACLA: 960 Hz in the 16-sampling mode (1 pulse image is taken by 16 images)

DAQ bandwidth:

620 Gbps @ 32 bit/pixel 107 GB/s 9 PB/day, when operated continously First Beam Test: July 2024

of components: 12,586/system Engineering intensive project The outcome of a large collaboration.

Mo 40 kV,500 µA, total exposure time 338 ms (6400 frames)

35000

33000

31000

29000

25000

1.3

1.2 1.1

1.0

0.9

0.8

0.7

transmitted image flat field corrected

flat field image dark subtracted

Noise and Energy Resolution

Noise 25 e-rms \sim 250 eV FWHM

Peak Signal 28 Me-(17,000 phs@6 keV)

3K12U24

SPring 8

SFX at SACLA with CITIUS 20.2M First light

failure during commissioning

one sensor damaged by direct beam during experiments

Successful structure determination demonstrated. The first science experiments were carried out!

SPring.

Laboratory based Spectral CT

<u>V. Di Trapani^{1,2}</u>*, F. De Marco^{1,2}, F. Arfelli^{1,3}, Y. Honjo⁵, K. Ozaki⁵, H. Nishino^{5,6}, Y. Joti^{5,6}, T. Hatsui⁵, F. Orsini⁵, P. Thibault^{1,2}, R. H. Menk^{2,3,4} 1) University of Trieste, 2) Elettra Sincrotrone 3) INFN Trieste, 4) Mid Sweden Univ., 5) RIKEN 6) JASRI

presented at iWoRiD 2024

Conventional CT

Spectral decomposed CT (blue Ag, green KBr Gray polyethylene)

Analyzed Spectral Resolution in this experiments.
540 eV FWHM @ 5.9 keV, 670 eV FWHM @ 27.3 keV

Summary

SP	
	SACLA

Pixel Size	72.6 µm square	Sr
Frame rate	17.4 kHz	117.5 kHz @1/8 ROI, double Burst Mode at 10 MHz XPCS single-crystal structure analysis
Saturation Count rate	945 Mcps/pixel @ 10 keV 18 Tcps/cm ²	1.23 Gcps/pixel @ 5 keV Bragg CDI, ptychography SWAXS
Sensor	Silicon (650 µm thick)	3D XRD (37 keV), Quasi-elastic scattering (14.4 keV) tender X-ray ptychography
Vacuum	compliant	
Intra-module gap	None	20.2Mpixel for XFEL SFX Serial MX at SR
Tiling	4 side	250-700 eV FWHM (25-40 e-rms) Spectral decomposed CT
Noise	<40 e-rms 0.018 phs rms @8 keV	Quick XAFS for battery studies X-ray BPM for SPring-8-II storage ring

Summary

Performance and Applications

- frame rate (> 17.4 kHz) **XPCS,** single-crystal structure analysis
- high-intensity (up to 1 Gcps/pixel) Bragg CDI, ptychography, SWAXS
- high sensitivity 3D XRD (37 keV), Quasi-elastic scattering (14.4 keV)
- Tiling 20.2Mpixel for XFEL SFX
- Low noise ⇒ Spectro-imaging
 - 250-700 eV FWHM (25-40 e-rms)
 - 180 Mevents/sensor (12.2 Mevents/cm²)
 - **Spectral decomposed CT,** Fluorescence-Yield Quick XAFS for battery studies, X-ray beam monitor for SPring-8-II storage ring

Acknowledgment

SPring. 8

RIKEN and JASRI Team

 Kyosuke Ozaki, Yoshiaki Honjo, Haruki Nishino, Kazuo Kobayashi, Koji Motomura, Kyo Nakajima, Yasumasa Joti, T. Kudo, T. Sugimoto, M. Yamaga, T. Kameshima, Y. Inagaki, K. Fujiwara, T. Nakagawa, Y. Oyaki, M. Kimoto, M. Nakamachi, M. Yabashi, T. Ishikawa

RIKEN R-CCS

- S. Matsuoka, K. Sato, K. Sano, F, Shoji and their division members

Private Companies

- <u>Sony Semiconductor Solutions</u>
- GLORY System Create Ltd
- Nihon Gijyutu Center
- Meisei Electric Co. Ltd.
- JEPICO Corporation
- Tokyo Electron Device Limited

Thank you for your attention.