
• Fundamental R&D in HPC
• Design space exploration for the next-gen supercomputers (Jens Domke, Matsuoka team,  AIST)
• Benchmarking and Performance analysis of big data applications on NVDIMM (Andres Rubio Proano, FSU) 
• Reproducibility in MPI/OpenMP applications by record-and-replay techniques
• Auto-detection of checkpoint variables (Nanchang Hangkong University, PNNL) 
• ABFT for tensor operations in deep learning framework (Nanchang Hangkong University, PNNL) 
• Failure analysis on Fugaku (Shoji, Yamamoto, Northeastern Univ.) 
• I/O optimization for 2D/3D sub-tiling of MPI-IO on a near-node local storage architecture (KTH) 

• HPC for AI/BD
• Data platform for Fugaku and RSC facilities, SPring-8 and SACLA (Matsuda, Kaneyama, Harada, Shoji +RSC)
• DL4Fugaku: Deep learning framework tuning on Fugaku (Matsuoka team, Imamura team, Fujitsu)
• Storage performance analysis and storage design exploration for deep learning (Takaaki Fukai)

• AI/BD for HPC
• Big data compression with AI techniques  (FSU)

Research projects and collaborations HIGPH PERFORMANCE
BIG DATA
RESEARCH TEAM
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Generation: Scientific big data is generated every day all over the world
— LHC (Large Hadron Collider) in CERN generated about 88PB of data in 2018 [1]

• “Data archival is expected to be two-times higher during Run 3 and five-times higher or more during Run 4 
(foreseen for 2026 to 2029). “

Big Data Generation and Transfer

[1] Esra Ozcesmeci, “LHC: pushing computing to the limits”, https://home.cern/news/news/computing/lhc-pushing-computing-limits March 1st, 2019

LHC Run1 LHC Long 
Shutdown LHC Run2 LHC Run 3 LHC Run 4
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https://home.cern/news/news/computing/lhc-pushing-computing-limits
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Transfer: Data transfer is an essential part of data analytics
• Generated data from sensors must be transferred to internal computers for the analysis
• In some case, the facilities needs to transfer the data to external collaborators via WAN
– e.g. ) In LHC, 830 PB of data and 1.1 billion files were transferred all over the world [1]

Big Data Generation and Transfer (Cont’d)

[1] Esra Ozcesmeci, “LHC: pushing computing to the limits”, https://home.cern/news/news/computing/lhc-pushing-computing-limits March 1st, 2019

Efficient data transfer and its management is important in big data analysis

Big data transfer

Sensors Internal/External
Computers

https://home.cern/news/news/computing/lhc-pushing-computing-limits


Research and development of an infrastructure for collecting, 
analyzing and utilizing big data in large-scale research facilities 

(Fugaku/SPring-8/SACLA) Project Leader: Kento Sato
［Overview］

Members
Kento Sato, R-CCS
Fumiyoshi Shoji, R-CCS
Motohiko Matsuda, R-CCS
Kaneyama Hidetomo, R-CCS
Hiroshi Harada, R-CCS
Jorji Nonaka, R-CCS
Kentaro Sano, R-CCS
Masaaki Kondo, R-CCS
Tomohiro Ueno, R-CCS
Takaki Hatsui, RSC
Yasumasa Joti, RSC

［Objective］
• The Objective of this project is to establish a "big data infrastructure" that enables data collection, analysis, and utilization between 

SPring-8/SACLA and Fugaku. We are working on following sub-proejcts:
• (1) Data pre-processing infrastructure: To efficiently store experimental data obtained from sensors, we perform data 

conversion and pre-processing at the hardware level using FPGA 
• (2) Data compression and transfer infrastructure: We develop data compression and transfer infrastructure 
• (3) Data analysis infrastructure: We will build an infrastructure (workflow tools and deep learning framework) to efficiently

analyze the data in HPC systems
• (4) Data utilization infrastructure: We will build a data utilization infrastructure to make use of the collected primary data and 

analysis results (e.g., Single sign-on authentication, GakuNin RDM etc.)

Project team members

Big data
（After transfer）

Automatic
data transfer

layer

Data 
(De)compression

layer

Big data
(Before transfer）

(1) Data pre-processing

gfpcopy client
(auto-send)

gfpcopy client 
(auto-recv)

Decompression

SPring-8
temp. storage HPCI StorageData conversion/pre-

processing edge server

Compression

SPring-8/SACLA

Supercomputer Fugaku

AI/BD frameworks

(2)Data compression/transfer (3)Data processing

(4) Data sharing and usability

R-CCS
Storage
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HPCIシステム概要
▪ 高速ネットワーク

— 「富岳」と全国の大学や研究機関(図1)の計算資源やストレージを高速ネットワーク(SINET5、図2)で結んだシステム

▪ シームレスな認証環境
— 全国のHPC資源を効率よく利用する仕組みとして、HPCIは公開鍵暗号方式を用いたシングルサインオン (SSO)と呼ばれ
る機能を提供

— 利用者は任意のHPCIリソースへログインすれば、利用権のある全てのHPCIリソースをシームレスに利用可能。
• （例）「富岳」へログインして計算を行い結果をHPCI共用ストレージに転送したい場合に、再度 HPCI共用スト
レージへログインする必要はありません。

2019/03/13 11(15HPCIの概要｜HPCI

Page 2 of 3http://www.hpci-office.jp/pages/what_is_hpci?parent_folder=

図1：HPCIに共用計算資源を提供する機関 (平成30年度)

図2：SINET5回線構成図

学際大規模情報基盤共同利用・共同研究拠点事業(JHPCN)について学際大規模情報基盤共同利用・共同研究拠点事業(JHPCN)について

学際大規模情報基盤共同利用・共同研究拠点事業(JHPCN)は、「共同利用・共同研究拠点の認定等に関する規定」(平成

2019/03/13 11(15HPCIの概要｜HPCI

Page 2 of 3http://www.hpci-office.jp/pages/what_is_hpci?parent_folder=

図1：HPCIに共用計算資源を提供する機関 (平成30年度)

図2：SINET5回線構成図

学際大規模情報基盤共同利用・共同研究拠点事業(JHPCN)について学際大規模情報基盤共同利用・共同研究拠点事業(JHPCN)について

学際大規模情報基盤共同利用・共同研究拠点事業(JHPCN)は、「共同利用・共同研究拠点の認定等に関する規定」(平成

「富岳」
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ネットワーク基盤︓学術情報ネットワーク（SINET5）を利⽤

(TBD)A64FX

Xeon/EPYC
(x86-64)

CPU architecture

ABCI

Cygnus

AOBA-A

AOBA-B

Grand Chariot

XC40 TSUBAME3.0

ITOーA

Wisteria(Aquarius)

Wisteria (Odyssey)

HPCI：High Performance Computing Infrastructure

HPCI共用計算資源

OCTOPUS

GPU
P100

GPU
P100

Polaire KNLKNL

筑波大学

北海道大学

東北大学

産業技術総合研究所

名古屋大学

大阪大学

京都大学

九州大学

東大・JCAH㻼C

東京大学

海洋研究開発機構

東京工業大学

ITOーB

GPU
A100

3

Oakbridge-CX

GPU
V100

共用ストレージ（西）

理化学研究所
共用ストレージ（東）

GPU
P100

FX1000 

CX2570 M5

新スパコンVector

富岳

地球ｼﾐｭﾚｰﾀ(ES4)
VE搭載ノード
CPUノード

GPU
V100

� 2021年度にて提供終了した計算機
・JCAH㻼C  㻻akforest-㻼AC㻿
・東大 㻾eedbush-H / L
� 2022年度から年間利用可能な計算機

・東大/JCAH㻼C  Wisteria/BDEC-01(㻻dyssey)
・東大 Wisteria/BDEC-01 (Aquarius)
・阪大 㻿㻽㼁ID
・JAM㻿㼀EC  地球シミュレータ(E㻿4)
� 2022年度中に計算機更新予定

・京大 XC40 Æ 新スパコンA（仮称）

SQUID GPU
A100 VEVE

KNLKNL

GPU
A100

GPU
V100

� 2022年度HPCI共用計算機資源

KNLKNL

⽂部科学省委託事業「HPCIの運営」代表機関⼀般財団法⼈⾼度情報科学技術研究機構神⼾センター “HPCI共⽤計算資源について”, 令和4年度HPCIシステム利⽤研究課題募集説明会 (2021年 9⽉28⽇版) , 
https://www.hpci-office.jp/materials/r04a_boshu_setsumeikai_hpci.pdf?a

https://www.hpci-office.jp/materials/r04a_boshu_setsumeikai_hpci.pdf?a
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HPCI共用ストレージ
▪ 概要

— HPCI 計算資源利用時における大容量のデータの格納や HPCI 計算資源間(or センター間)あるいは HPCI コミュニティ(or 
各研究分野)でのデータ共有を目的とした、広域に分散した大規模ストレージ

▪ ファイルシステム
— Gfarmファイルシステムとよばれる広域分散ファイルシステムで実現
— ２拠点のストレージを集約し、全国のHPCI計算機資源から、高速・大容量の単一ファイルシステムとしてデータ共有が可能
— 富岳ゲートウェイを含む HPCI 計算機資源のログインノードでは、HPCI 課題参加者が共用ストレージを利用できるよう、共用ストレー
ジのクライアント環境がインストールされています。

— 共用ストレージのクライアント環境をお手元の機材にインストールすることで、お手元の機材から直接共用ストレーズへアクセスが可
能です

HPCI 共用ストレージ 利用マニュアル （富岳ユーザ向け） 

 

6 

 

 共用ストレージの概要 

共用ストレージは、HPCI ユーザに提供される大規模データ共有基盤です。共用ストレージを利用すると、

地理的に分散された HPCI計算機資源間で大規模データを 1つのファイルシステムのもとに高速かつ安

全に共有することができます。 

共用ストレージは、ネットワーク共有ファイルシステムGfarm を採用しています。共用ストレージはメタデー

タサーバ(メタデータを保存・提供)とファイルシステムノード(ファイルを保存・提供)で構成されています。マ

スターメタデータサーバは東大 または RIKEN R-CCS に 1台、スレーブメタデータサーバは東大、RIKEN 

R-CCS に各 1台以上 設置されています。常にマスターメタデータサーバからスレーブメタデータサーバに

対してメタデータトランザクションをコピーすることによって、高い耐障害性を確保しています。 

富岳ゲートウェイを含む HPCI計算機資源のログインノードでは、HPCI 課題参加者が共用ストレージを利

用できるよう、共用ストレージのクライアント環境がインストールされています。 

共用ストレージのクライアント環境をお手元の機材にインストールすることで、お手元の機材から直接共用

ストレーズへアクセスが可能です。。クライアント環境のインストール手順は 「HPCI 用ストレージ利用マニ

ュアル -クライアント導入編」(https://www.hpci-office.jp/materials/hpci-st01-002.pdf) をご参照ください。 
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HPCI 共用ストレージ 利用マニュアル （富岳ユーザ向け） 
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 クラウドストレージゲートウェイノードへのログイン 

富岳では、 HPCI 共用ストレージやクラウド環境へのアクセスするためのログインノードとして、クラウドス

トレージゲートウェイノードを提供しています。クラウドストレージゲートウェイノードには、HPCI 共用ストレ

ージを利用するためのクライアントソフトウェアがインストールされています。 

 

 

クラウドストレージゲートウェイノード 
代表 FQDN 実態 FQDN 

csgw.fugaku.r-ccs.riken.jp csgw1.fugaku.r-ccs.riken.jp 

csgw2.fugaku.r-ccs.riken.jp 

 

クラウドストレージゲートウェイノードへは、SSH および GSISSH を用いて、富岳ログインノードと同様にロ

グインすることができます。 

SSH でのログインを行うためには、事前に富岳ポータルサイト(https:///fugaku.r-ccs.riken.jp)へアクセスし

て、公開鍵登録を行ってください。登録方法については、富岳の利用マニュアルをご参照ください。 

 

HPCI 共⽤ストレージ利⽤マニュアル, 2021/04/16, ⽂書番号:HPCI-ST01-004-03 
h+ps://www.hpci-office.jp/materials/hpci-st01-004.pdf?0416

https://www.hpci-office.jp/materials/hpci-st01-004.pdf?0416
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§ We started data transfer service from SACLA to HPCI shared storage
— To facilitates data analitycs in HPCI systems inlucidng Fugaku

§ We are planing to expand the service to SPring-8 synchortron radiation facility and enhance the 
usability (Common authentication scheme, GakuNin RDM etc.)

Data transfer service in SACLA

Source (May 14, 2021): https://www.riken.jp/pr/news/2021/20210514_1/

Data Transfer Service to HPCI Shared Storage 
Toward the creation of innovative achievement through SACLA

Source (May 14, 2021): http://xfel.riken.jp/users/bml09-1.html

SACLA HPC: 
Data Transfer Service to HPCI Shared Storage 
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Big data transfer in SPring-8 

§ SPring-8 public beamlines (26 BLs) generated 0.32 PB/year in 2017
§ With the next generation detector (CITIUS), it is projected that the facility will 

generate 1.3 ExaB of raw data per year in 2025
— Actual transfer size can be reduced to 100-400 PB by

• Image averaging/extraction
• Reducing duty ratio to throttle data generation rate

We are trying to further compress this big data 
to accelerate data transfer from sensors to HPC systems

Facility

Sensor
Near-sensor 

servers

PE

PE

PE

PE

Internal/External 
computers
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1.3 EB

Image averaging/extraction and throttling

Intermediate
Storage
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Prediction is one of keys for good compression
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§ PredNet [1]
— Deep recurrent convolutional neural network
— Given a frame of pictures/video, this NN can predict multiple future frames

We use deep neural network (PredNet) for prediction

Published as a conference paper at ICLR 2017

Predicted

7
Predicted

Actual

Scrambled

Figure 4: PredNet predictions for car-cam videos. The first rows contain ground truth and the second
rows contain predictions. The sequence below the red line was temporally scrambled. The model
was trained on the KITTI dataset and sequences shown are from the CalTech Pedestrian dataset.

respectively, compared to the CNN-LSTM Encoder-Decoder. More details, as well as a thorough
investigation of systematically simplified models on the continuum between the PredNet and the
CNN-LSTM Encoder-Decoder can be found in Appendix 5.1. Briefly, the elementwise subtraction
operation in the PredNet seems to be beneficial, and the nonlinearity of positive/negative splitting
also adds modest improvements. Finally, while these experiments measure the benefits of each com-
ponent of our model, we also directly compare against recent work in a similar car-cam setting, by
reporting results on a 64x64 pixel, grayscale car-cam dataset released by Brabandere et al. (2016).
Our PredNet model outperforms the model by Brabandere et al. (2016) by 29%. Details can be
found in Appendix 5.2. Also in Appendix 5.2, we present results for the Human3.6M (Ionescu
et al., 2014) dataset, as reported by Finn et al. (2016). Without re-optimizing hyperparameters, our

8

t=1 t=2 t=3 t=5t=4 t=6 t=7 t=8 t=9 t=10

Prediction
[1] Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and 
unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

https://coxlab.github.io/prednet/
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§ We train PredNet to learn how pixels move and how fast
— i.e.) Giving a number of time evolutional frames to PredNet

§ When compressing frames from t=1 to t=5, we predict future frames from original data (t=1)

§ We compute diff, apply series of encoding

§ We only store (1) base frame data (t=1) and (2) compressed data

Compression: Predict future frames and encode

t=1 t=2 t=3 t=5t=4

PredNet

diff diff diff diff

Additional 
encoding

Compressed
data

Compressed
data

Compressed
data

Compressed
data

Training data:
Time evolutional frame 

data set

PredNet

Training Inference + Data compression
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§ Quantization is a key data conversion to give good compression rate 
— This data conversion tries to maximize data compression rate while bounding certain-level errors

§ Point-wise relative error bound
— All the individual values are kept below a specified error bound threshold (!)
— Formulation
• Give original data: ! = #!, #", … , and quantized data: !# = ##!, ##", … ,
• The following inequality holds for each data point:

Encoding workflow 

Di Ci
Density-based

Spatial 
Encoding
(Lossless)

Point-wise relative 
error-bounded 
quantization

(Lossless or Lossy)

Entropy 
Encoding
(Lossless)

Lossless 
Compressor
(Lossless)

Decompression

Compression

max
"!∈$, ""!∈$&

$' − $′'
$'
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§ TEZIP achieves an improvement up to 3.2× in terms of compression ratio.

§ On average, lossless TEZIP delivers 2.1× better compression ratio compared to the second-best 
lossless compressor x265

§ “Baseline” computes delta values from the previous frame 

TEZIP achieves high comprassion rate with comparable 
compression time
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Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.

Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction

��

SPring-8 data
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§ TEZIP’s lossy compression mode can 
set point-wise relative error-bound at 
quantization
— The error-bound is set for SZ and TEZIP 

(configurable) based on errors in ZFP 
(unconfigurable)

§ Results 
— TEZIP achieves an improvement up to 

3.3x than the second best (SZ) in terms 
of compression ratio

Lossy compression mode in TEZIP futher improves 
compression ratio under the same error-bound

Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.
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Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction

��

SPring-8 data
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TEZIP is open-source software and future works
§ We open-sourced TEZIP and released documents

§ Future works
— Improvement in quantization
— Improvement in Prediction
• TEZIP relies on a generic predictor (PreNet)
• The compression ratio will be futhrer imporved with domain-specific 

predictors

Readthedocs:
https://tezip.readthedocs.io/en/latest/?badge=latest

Github: 
https://github.com/kento/TEZip

Japanese

English

in a second) and compression ratio (the ratio of the data
size before and after compression). Otherwise, complicated
(de)compression can achieve higher compression ratio with
lower speed while simple (de)compression may achieve lower
compression ratio with higher speed. Time evolutionary data
offer additional opportunities to apply predictive DNN tech-
niques. However, DNN techniques can take more time than
simple algorithms such as curve fitting models. Thus, applying
DNN for effective compression (good trade-off between com-
pression ratio and (de) compression time) of time evolutionary
data remains an interesting research challenge.

In this paper, we develop an efficient (de)compression
framework called TEZIP (Time Evolutionary ZIP) that can
support dynamic lossy and lossless compression of time evolu-
tionary image frames with high compression ratio and speed.
TEZIP employs PredNet to exploit the temporal locality of
time evolutionary data, predict the next image frames and
derive the resulting differences between the predicted frame
and the actual frame as a delta frame that is much more com-
pressible. Next, we apply three encoding techniques to exploit
the spatial similarities in the delta frames, point-wise relative
error-bounded quantization, density-based spatial encoding
and entropy encoding. Finally, we apply lossless compressors
to compress these encoded frames. To pinpoint the best trade-
off between (de)compression ratio and speed, we also propose
window-based prediction algorithms. Specifically, this paper
makes the following contributions:

• A new application of neural network technologies for data
compression through an extension to the PredNet model
that exploits the temporal locality of time evolutionary
image data and supports both integer and floating-point
value prediction of real-world datasets;

• Novel encoding techniques exploiting spatial similarities,
point-wise relative error-bounded quantization, density-
based spatial encoding and entropy encoding;

• Flexible window-based prediction algorithms to find the
best trade-off between compression ratio and compression
speed while maintaining the image quality.

• An empirical evaluation showing effectiveness of TEZIP
with real-world time evolutionary data by comparing with
popular lossy and lossless compressors.

Especially, our evaluation on real-world time evolutionary
data generated from SPring-8 [21] shows that, in terms of
compression ratio, TEZIP outperforms existing lossless com-
pressors such as x265 by up to 3.2x and lossy compressors
such as SZ by up to 3.3x. To the best of our knowledge,
TEZIP is the first compressor that can accurately predict time
evolutionary data for effective data reduction and pinpoint a
good trade-off for balanced compression ratio and speed.

II. BACKGROUND

Time Evolutionary Data: Synchrotron radiation facilities
are used to elucidate microscopic structures of a varieties of
materials from physical, chemical, to biological and medical
domains. With bright X-rays in the synchrotron radiation fa-
cilities , scientists can observe the evolution of the structure in

time. Such capabilities shed light on the origin of various phe-
nomena such as the biological function of proteins, the causes
of battery deterioration, etc. Along with the improvement on
X-ray sources, X-ray imaging detector technologies are rapidly
developing. For example, a large synchrotron radiation facility
(SPring-8) with about 60 beamlines is planning to upgrade
these beamlines with the next generation detector (CITIUS).
In 2025, it is projected, that a single beamline will generate
1.3 Exabytes of data per year in raw format [21].
Predictive Coding Network (PredNet): To achieve fast
transfer of compressed data in synchrotron radiation and
similar facilities, effective prediction is important. For accurate
prediction, we use a deep convolutional recurrent neural net-
work which can exploit a key feature of time evolutionary
data which is the similarity between consecutive images.
The changes observed between consecutive time evolutionary
images are mostly rule-based changes, e.g., certain rules from
physical systems. PredNet (Predictive coding NETwork) is
such a deep convolutional recurrent neural network. PredNet
is a self-supervised neural network model designed to learn
predictive coding of video frames. PredNet can learn represen-
tations that are relatively tolerant to object transformations.
It can also efficiently decode latent object parameters (e.g.
pose) and identify objects with few training frames which
makes it a suitable candidate for our purpose. Given one
RGB image frame from time evolutionary dataset, the model
trained by PredNet can predict the next RGB image frame
for the inference phase. PredNet accepts both floating-point
and integer values for RGB values and predicts the next RGB
image in floating-point. For the training phase, PredNet is
designed to receive RGB values as the training data, and then
produce a trained model that can learn the hidden trends of the
pixel movement and predict future frames from base frames.
We leverage this prediction engine of PredNet for effective
compression of time evolutionary data.

III. TEZIP: (DE)COMPRESSION OF TIME EVOLUTIONARY
IMAGE FRAMES

Time 
evolutionary 
image frames

Time evolutionary data
(Training data)

B0

B0

Original frames (or decompressed image frames)

Predicted frames

Delta frames

Compressed
frames

B1 B2 Bn

D1 D2 Dn

P1 P2 Pn

C1 C2 Cn

2
3 3 3

Trained model

4 4 45 6 6 6

7
8 8 8

9

1

: Model training

: Compression workflow

: Decompression workflow

Fig. 1. Workflows of TEZIP (de)compression

We explain how to compress time evolutionary image
frames with high ratio in this section and elaborate how to
improve compression speed in Section IV.

More precisely, PredNet is a self-supervised neural network such that the
loss function of the (i + 1)th predicted frame from the ith frame uses the
actual (i+ 1)th frame as its supervisory image frame.

��

Generic predictor 
(PredNet)

Domain-specific 
predictor

This project is seeking for a Postdoc or a Researcher !
https://www.hpbd.r-ccs.riken.jp/recruiting/

https://www.hpbd.r-ccs.riken.jp/recruiting/
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l Once we move data to computers, the users will analyze the data and can use AI for the feature 
detection, Image recognition, segmentation etc.

l We must provide fast and scalable AI training environments on Fugaku
l GPU has become a popular platform for executing DL, but we revisit the idea of running DL on 

CPUs in Fugaku

Supercomputer Fugaku & Deep learning

To make use of Fugaku/A64FX performance, tuning AI software stack is indispensable

Big data
（A)er transfer）

Automatic
data transfer

layer

Data 
(De)compression

layer

Bigdata
(Before transfer）

(1) Data pre-processing

gfpcopy client
(auto-send)

gfpcopy client 
(auto-recv)

Decompression

SPring-8
temp. storage HPCI StorageData conversion/pre-

processing edge server

Compression

SPring-8/SACLA

Supercomputer Fugaku

AI/BD frameworks

(2)Data compression/transfer (3)Data processing

(4) Data sharing and usability

R-CCS
Storage

13 © 2019 FUJITSU

A64FX: Summary
n Arm SVE, high performance and high efficiency

n DP performance   2.7+ TFLOPS,  >90%@DGEMM

n Memory BW      1024 GB/s,    >80%@STREAM Triad

12x compute cores
1x assistant core

A64FX
ISA (Base, extension) Armv8.2-A, SVE
Process technology 7 nm
Peak DP performance 2.7+ TFLOPS
SIMD width 512-bit
# of cores 48 + 4
Memory capacity 32 GiB (HBM2 x4)
Memory peak bandwidth 1024 GB/s
PCIe Gen3 16 lanes
High speed interconnect TofuD integrated

PCle
Controller

Tofu
Interface

C

C

C

C

N
O
C

HBM
2

HBM
2

HBM
2

HBM
2

CMG CMG

CMG CMG

CMG�Core Memory Group   NOC�Network on Chip

SCAsia2019, March 12

Toshiyuki Shimizu, “Post-K Supercomputer with Fujitsu's Ori
ginal CPU, A64FX Powered by Arm ISA”, Nov. 15th, 2018

à High perf. FP16/INT8
à High bw mem (1024 GB/sec)
à Scalable TofuD net.
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l Objective: Fast and scalable deep learning on Fugaku/A64FX
l Conduct porting, performance analysis and tuning
l Deploy large-scale deep learning environment
l Enhance the usability for production use in Fugaku

l MOU for RIKEN/Fujitsu collaboration on AI framework development in Fugaku (Nov. 25, 2019)

l RIKEN R-CCS internal teams are working together
l Under collaboration with Industry & academia
l Porting, tracing DL, performance analysis, tuning, merge to upstream  

DL4Fugaku: Deep learning for Fugaku

RIKEN R-CCS

Operation team

Research teams
Large-scale parallel numerical computing 

technology research team

Application tuning development unit
à Software Development Technology Unit

High performance AI system research team

High performance big data research team

Collaborators

ARM

Cybozu

AIST

Fujitsu
Laboratories

Fujitsu limited

Linaro

Tokyo Tech

(alphabetical order)

※ Some of software introduced in the rest of DL4Fugaku project slides is under development. 
Experimental results will be changed in future in the course of tuning 

https://www.hpbd.r-ccs.riken.jp/hpbd/en/dl4fugaku-project/

https://www.hpbd.r-ccs.riken.jp/hpbd/en/dl4fugaku-project/
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DL4Fugaku Project Menbers

Framework & oneDNN
porting & tuning

Naoki Shinjo,  Akira Asato, 
Atsushi Ike, Koutarou Okazaki,
Yoshihiko Oguchi, 
Masahiro Doteguchi, 
Jin Takahashi, Kazutoshi Akao, 
Masaya Kato, Takashi Sawada,
Naoto Fukumoto,
Kentaro Kawakami,
Naoki Sueyasu, Kouji Kurihara, 
Masafumi Yamazaki,
Takumi Honda

Tuning for Fugaku
Satoshi Matsuoka, High Performance Artificial Intelligence 
Systems Research Team Leader
Kento Sato, High Performance Big Data Research Team Leader
Kazuo Minami, Application Tuning Development Unit Leader
Akiyoshi Kuroda, Application Tuning Development Unit 

Fugaku AI 
project

Shigeo Mitsunari (Xbyak)Technical
support
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Porting and Tuning approach
l Deep learning software stack

l Deep learning frameworks reply on low-level numerical libraries optimized for specific 

hardware

l cuDNN for NVIDIA GPU, OneDNN for Intel CPU, ??? for A64FX

l Approach
l We decided to tune OneDNN for Fugakuʼs A64FX CPUs (OneDNN_aarch64) instead of 

full scratch development

l Current status
l The source codes are in a github repository

l https://github.com/fujitsu/dnnl_aarch64
l We also contribute to upstream of OneDNN repo NVIDIA

GPU

DL frameworks
（TensorFlow, PyTorch, Chainer etc.）

cuDNN

Intel CPU A64FX

OneDNN OneDNN
_aarch64

Hardware

Low-level libraries

Frameworks

Slide courtesy of  Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications

Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)
à Deep Neural Network Library (DNNL) 
à oneAPI Deep Neural Network Library (oneDNN)

https://github.com/fujitsu/dnnl_aarch64
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Original oneDNN@Intel logic

Copyright 2021 FUJITSU LIMITED
19

oneDNN : Low-level library for deep learning

PyTorch
or

TensorFlow

Framework

For x64

And perform the 
graph processing 

with data

Xbyak

JIT code generator 
Function Call
to make JIT code

and to execute JIT build

& execute

Low-Level Library 
for Deep learning

oneDNN

machine 

code sequences

MKL / BLAS
execute

Function Call
to execute BLAS

Execute using C++ implemented function

Priority 1. JIT code generator for a particular convolution calculation

2. JIT code generator for a general convolution calculation

3. Calculation code with BLAS

4. Calculation cade using C implemented function

High

Define Graphs with 
- the shapes of 

input/output data

- operation parameters

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021

1. OneDNN gets information from a 
framework about (1) Shapes of 
input/output data; (2) Operation 
parameteers of each layer

2. OneDNN calls the fastest tensor 
routine based on the information

3. The priority is
a) JIT-generated code
b) BLAS
c) C code implemented in 

OneDNN 

• The generated code is cached and reused
• The same convolution kernels are called 

many time in deep learning
• The JIT-generation overhead is negligble 

for deep learning workloads 



31

§ By using the Xbyak, XED-Translator cascade, when the instruction set is extended, 
Xbyak and XED are replaced with the updated ones, and we only need to modify the 
mapping table between intel and Arm instructions in the Translator.

Sustanable Porting Workflows

Copyright 2021 FUJITSU LIMITED
23

oneDNN translator for aarch64

Xbyak_aarch64

PyTorch
or

TensorFlow

Framework

For A64FX

machine 
code sequences

Xbyak

XEDTranslator

Xbyak translator for aarch64

output

& execute

output

disassemble

Low-Level Library 
for Deep learning

oneDNN
for aarch64

extend
for aarch64

For x64

Type of mnemonic
Operand information

translated Xbyak-assembler

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021
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Perfomrance Evaluation: ResNet-50 on A64FX (A single node)
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PyTorch v1.5.0 TensorFlow v2.1.0

l Environment
l HW: A64FX (2.2GHz, 48 cores, HBM2 32GB)
l SW: Fujitsu compier (fcc), Fujitsu numerical libraries (SSL-II)

Ref.) NVIDIA GPU V100: 905 ips [1]
PyTorch/ResNet-50(training)/ImageNet2012

[1] NVIDIA Data Center Deep Learning Product Performance, https://developer.nvidia.com/deep-learning-performance-training-inference 

Slide courtesy of  Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications
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l MLPerf HPC (v0.7) Benchmark
l One of deep learning benchmarks in MLPerf HPC
l Repository: https://github.com/mlcommons/hpc
l Benchmarks

l CosmoFlow（宇宙科学）

- Predict cosmological parameters from N-body cosmo simulation data
- 3D CNN for regression of 4 parameters
- Training data shape is  (128, 128, 128, 4)
- Training data size is 5.1TB

l DeepCAM（気候・気象）

- Indentify extreme weather phenomena in climate simulation data
- 2D semantic segmentation with DeepLabV3+ model which predicts 3 classes per pixel 

(atomaspheric river, tropical cyclon or background)
- Training data shape is (768, 1152, 16) and labeled with 3 per-pixel classes
- Training data size is 8.8 TB

l Catalyst (v1.0)

MLPerf HPC v0.7 (v1.0) Benchmark 

CosmoFlow DeepCAM

https://github.com/mlcommons/hpc
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Our process topology optimization enables scalable training

Copyright 2021 FUJITSU LIMITED
36

Throughput of Hybrid Parallelism

Throughput scales almost ideally for 
global batch sizes when data + model 
parallelism is used

16,384 nodes(=processes)

Batch size 4,096

4x1 partitioning
100.0

1000.0

10000.0

128 256 512 1024 2048 4096

sa
m

pl
es
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ec

Global batch size (= # of nodes when data parallel)

CosmoFlow throughput on Fugaku
(mini batchsize=1)

data parallel
data+model parallel(2x1)
data+model parallel(4x1) ×

=

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021

We achieved good scalability with a hybrid using of data&model parallel training  

4,096 models 
(data parallel)

4x1 nodes/model
(model parallel)
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l Fugaku was ranked at No 2. in MLPerf HPC ranking (Nov., 2020) even 
with “1/10 of Fugaku nodes”
l Fujitsu, AIST and RIKEN Achieve Unparalleled Speed on MLPerf HPC 

Machine Learning Processing Benchmark
l https://www.hpcwire.com/off-the-wire/fujitsu-aist-and-riken-achieve-

unparalleled-speed-on-mlperf-hpc-machine-learning-processing-benchmark/

MLPerf HPC (v0.7) ranking: CosmoFlow

MLPerf HPC v0.7結果
◼他の機関と比較し、ABCI・富岳の結果は非常に高速

Copyright 2020 Fujitsu Laboratories Ltd.

CosmoFlow DeepCam

GPUマシン CPUマシン GPUマシン
ABCI 富岳 ABCI

圧倒的な高速性を実現

20倍

14倍

6

GPU machines CPU machines

FugakuABCI

10x

14x

Submitter System Processor # Software Time [min]

Fujitsu ABCI Xeon Gold 6148
Tesla V100 GPU

1024
2048 TensorFlow 13.21

Fujitsu / 
RIKEN Fugaku A64FX 16384 TensorFlow + 

Mesh TensorFlow 30.07

https://www.hpcwire.com/off-the-wire/fujitsu-aist-and-riken-achieve-unparalleled-speed-on-mlperf-hpc-machine-learning-processing-benchmark/
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§ MLPerf HPC v0.7 in FY2020: Strong scaling metric
— Strong scaling metric
• Measures time to train one model on a system

— Due to the large-batch problem, 1/10 of Fugaku nodes give the best 
performance

— Benchmarks: CosmoFlow, DeepCAM

§ MLPerf HPC v1.0 in FY2021: Strong + Weak scaling metric
— v1.0 introduces a new weak scaling metric (in addition to strong scale metric)
• Time-to-train à Throghputs (models/second)

— Weak scaling metric
• Train multiple models on a system and measure # of trained models per sec
• Models are independently trainined eath other ans it is scalable
• We could use 1/2 of Fugaku nodes

— Benchmarks: CosmoFlow, DeepCAM and Catalyst
— Six metrics: {CosmoFlow, DeepCAM and Catalsyt} x {Strong, Week}
à We targeted CosmoFlow & Week scaling metric

MLPerf HPC (v1.0) introduced scalability rules

CN CN CN CN

CN CN CN CN

CN CN CN CN

CN CN CN CN

Training one model

CN CN CN CN

CN CN CN CN

CN CN CN CN

CN CN CN CN

Training multiple models
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§ Fugaku took first place in MLPerf HPC v1.0 (CosmoFlow, weak scaling metric)
— 82,944 CPUs are used (128 CPUs per model instance)
— Trained 637 models in 8.26 hours (495.6 mins)
à 1.285 modesl / min

MLPerf HPC v1.0 result (CosmoFlow & Weak scaling metric) 

Figure from Koichi Shirahata (Fujitsu Ltd) 
presentation at SC21 BoF (MLPerf HPC)

MLPerf HPC v1.0 Result (CosmoFlow)

○Fugaku took first place in 
MLPerf HPC v1.0 (CosmoFlow, 
weak scaling metric)
○82,944 CPUs are used (128 

CPUs per model instance)
○Trained 637 models in 495.6 

minutes

© 2021 Fujitsu Limited
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Source: https://www.fujitsu.com/global/about/resources/news/press-releases/2020/1119-02.html

12 x 54 = 
648 models
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Performance results on other neural networks

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021

§ With tuned oneDNN for A64FX, we achieve1.6x to 7.8x performance 
improvement

Copyright 2021 FUJITSU LIMITED
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Performance Improvement of Various 
Neural Network models with one FX700
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Supported TensorFlow and PyTorch versions on Fugaku
l Fugaku officially supports TensorFlow-2.2.0, PyTorch-1.7.0/1.6.0. These versions are 

linked to the Fujitsuʼs oneDNN library tuned for A64FX
l Location

l FEFS storage︓/home/apps/oss/... 
l Package versions

l Other: Python ver.3.8.2 + mpi4py ver.3.0.3, pandas ver.1.2.2, numpy ver.1.19.0, scipy ver.1.5.2, 
h5py ver.2.8.0, libtensorflow_cc.so ver.2.2.0, Batched BLAS ver.1.0, fapp ver.1.0.0 etc.

環境 モデル対応 提供状況

FW OneDNN Horovod ResNet50 OpenNMT ResNetX BERT Mask-
RCNN 理研様提供 Fujitsu github

公開

PT v1.5.0 v0.21.0 v0.19.0 ✔ ✔ ✔

PT v1.6.0 v1.6.0 v0.20.3 ✔ ✔ ✔ ✔ ✔

PT v1.7.0 v2.1.0 v0.20.3 ✔ ✔ ✔ ✔ － ✔

PT v1.7.0 v2.1.0L01 v0.20.3 ✔ ✔ ✔ ✔ ✔ － ✔

TF v2.1.0 v0.21.2 v0.19.5 ✔ ✔ ✔

TF v2.2.0 v2.1.0 v0.19.5 ✔ ✔ ✔ ✔ － ✔

TF v2.2.0 v2.1.0L01 v0.19.5 ✔ ✔ ✔ ✔ ✔ － ✔
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§ Data pratform is important for data-drive science 
— We launched a project to build data pre-processing/compression/analysis/utilization platform 

for RCS facilities (SPring-8, SACLA) and Fugaku
— For data compression, we introduced TEZip for fast data transfer  
• AI-driven data compression tool designed for time evolutionary data
• Compression rates are up to 15 in the lossless mode and 50 in the lossy mode in the real SPring-8 

data

§ DL4 Fugaku Project
— We extended OneDNN library for A64FX by developoing the Xbyak translator
— In MLPerf HPC v1.0 (CosmoFlow), Fugaku recieved No. 1 in the weak scaling metric 
— We also tuned many other NNs such as data classification, detection, NMT and NLP

§ Working with the operation team, we woulid like to enahcen the usability of 
Fugaku and other systems

Summary

Our team is seeking for researchers, postdocs and Ph.D. students.
If you are interested in joining our projects, pleasae feel free to contact me: kento.sato@riken.jp


